Part Number Hot Search : 
60051 20A10 HM612 TLSH180P 0RPLS 21PA1 1A66C HM612
Product Description
Full Text Search
 

To Download FS50SMJ-3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  sep. 2000 FS50SMJ-3 outline drawing dimensions in mm to-3p mitsubishi nch power mosfet FS50SMJ-3 high-speed switching use application motor control, lamp control, solenoid control dc-dc converter, etc. v v a a a a a w c c g 150 20 50 200 50 50 200 150 C55 ~ +150 C55 ~ +150 4.8 v gs = 0v v ds = 0v l = 100 m h typical value drain-source voltage gate-source voltage drain current drain current (pulsed) avalanche drain current (pulsed) source current source current (pulsed) maximum power dissipation channel temperature storage temperature weight v dss v gss i d i dm i da i s i sm p d t ch t stg symbol maximum ratings (tc = 25 c) parameter conditions ratings unit 4v drive v dss ... 150v r ds (on) (max) ... 30m w i d 50a integrated fast recovery diode (typ.) 125ns f qwe r q w e r wr q e
sep. 2000 v (br) dss i gss i dss v gs (th) r ds (on) r ds (on) v ds (on) ? y fs ? c iss c oss c rss t d (on) t r t d (off) t f v sd r th (ch-c) t rr mitsubishi nch power mosfet FS50SMJ-3 high-speed switching use v m a ma v m w m w v s pf pf pf ns ns ns ns v c/w ns 150 1.0 1.5 23 24 0.58 62 8200 870 440 54 110 850 340 1.0 125 0.1 0.1 2.0 30 32 0.75 1.5 0.83 electrical characteristics (tch = 25 c) drain-source breakdown voltage gate-source leakage current drain-source leakage current gate-source threshold voltage drain-source on-state resistance drain-source on-state resistance drain-source on-state voltage forward transfer admittance input capacitance output capacitance reverse transfer capacitance turn-on delay time rise time turn-off delay time fall time source-drain voltage thermal resistance reverse recovery time symbol unit parameter test conditions limits min. typ. max. i d = 1ma, v gs = 0v v gs = 20v, v ds = 0v v ds = 150v, v gs = 0v i d = 1ma, v ds = 10v i d = 25a, v gs = 10v i d = 25a, v gs = 4v i d = 25a, v gs = 10v i d = 25a, v ds = 10v v ds = 10v, v gs = 0v, f = 1mhz v dd = 80v, i d = 25a, v gs = 10v, r gen = r gs = 50 w i s = 25a, v gs = 0v channel to case i s = 50a, dis/dt = C100a/ m s performance curves power dissipation derating curve case temperature t c (?) power dissipation p d (w) maximum safe operating area drain-source voltage v ds (v) drain current i d (a) output characteristics (typical) drain current i d (a) drain-source voltage v ds (v) output characteristics (typical) drain current i d (a) drain-source voltage v ds (v) 5v 0 20 40 60 80 100 0 1.0 2.0 3.0 4.0 5.0 v gs = 10v t c = 25? pulse test 4v 3v p d = 150w 5v 0 10 20 30 40 50 0 0.4 0.8 1.2 1.6 2.0 v gs = 10v t c = 25? pulse test 4v 2.5v 3v 10 0 3 5 7 10 1 2 3 5 7 10 2 2 3 2 3 5 7 10 0 210 1 357 2 10 2 357 2 10 3 357 tw = 10 m s 100 m s 1ms 10ms dc t c = 25? single pulse 0 40 80 120 160 200 0 200 50 100 150
sep. 2000 0 20 40 60 80 100 0246810 t c = 25 c v ds = 10v pulse test 0 0.4 0.8 1.2 1.6 2.0 0246810 i d = 100a t c = 25 c pulse test 80a 20a 50a 40 0 8 16 24 32 10 0 357 2 10 1 357 2 10 2 357 23 v gs = 4v t c = 25 c pulse test 10v 10 2 3 5 7 10 3 2 3 5 7 10 4 2 3 2 5 7 10 0 210 1 357 357 2 10 2 357 23 2 ciss crss coss tch = 25 c f = 1mh z v gs = 0v 10 1 10 2 2 3 5 7 10 3 2 3 5 7 10 4 2 3 5 7 10 0 10 1 23 57 10 2 23 57 tch = 25 c v dd = 80v v gs = 10v r gen = r gs = 50 w t d(off) t f t r t d(on) on-state voltage vs. gate-source voltage (typical) gate-source voltage v gs (v) drain-source on-state voltage v ds (on) (v) on-state resistance vs. drain current (typical) drain current i d (a) drain-source on-state resistance r ds (on) (m w ) transfer characteristics (typical) gate-source voltage v gs (v) drain current i d (a) forward transfer admittance vs.drain current (typical) drain current i d (a) forward transfer admittance y fs (s) switching characteristics (typical) drain-source voltage v ds (v) capacitance vs. drain-source voltage (typical) drain current i d (a) capacitance ciss, coss, crss (pf) switching time (ns) 10 0 10 1 23457 10 2 23457 10 0 10 1 2 3 4 5 7 10 2 2 3 4 5 7 t c = 25 c 75 c 125 c v ds = 10v pulse test mitsubishi nch power mosfet FS50SMJ-3 high-speed switching use
sep. 2000 0 2 4 6 8 10 0 40 80 120 160 200 v ds = 50v 80v 100v t ch = 25 c i d = 50a 10 ? 10 0 2 3 5 7 10 1 2 3 5 7 ?0 0 50 100 150 v gs = 10v i d = 1/2i d pulse test 0.4 0.6 0.8 1.0 1.2 1.4 ?0 0 50 100 150 v gs = 0v i d = 1ma 0 20 40 60 80 100 0 0.4 0.8 1.2 1.6 2.0 t c = 125 c 75 c 25 c v gs = 0v pulse test gate-source voltage vs.gate charge (typical) gate charge q g (nc) gate-source voltage v gs (v) source-drain diode forward characteristics (typical) source-drain voltage v sd (v) source current i s (a) channel temperature tch ( c) drain-source on-state resistance r ds (on) (t c) transient thermal impedance characteristics channel temperature tch ( c) breakdown voltage vs. channel temperature (typical) pulse width t w (s) transient thermal impedance z th (ch?) ( c/ w) on-state resistance vs. channel temperature (typical) drain-source on-state resistance r ds (on) (25 c) drain-source breakdown voltage v (br) dss (t c) drain-source breakdown voltage v (br) dss (25 c) 10 ? 10 ? 2 3 5 7 10 0 2 3 5 7 10 1 2 3 5 7 10 ? 23 57 23 57 23 57 23 57 10 0 23 57 10 1 23 57 10 2 10 ? 10 ? 10 ? p dm tw d = t tw t d = 1.0 0.5 0.2 0.1 0.05 0.02 0.01 single pulse 0 0.8 1.6 2.4 3.2 4.0 ?0 0 50 100 150 v ds = 10v i d = 1ma threshold voltage vs. channel temperature (typical) gate-source threshold voltage v gs (th) (v) channel temperature tch ( c) mitsubishi nch power mosfet FS50SMJ-3 high-speed switching use


▲Up To Search▲   

 
Price & Availability of FS50SMJ-3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X